Answer:
[tex]\displaystyle [\frac{9}{11}, 1\frac{111}{143}][/tex]
Step-by-step explanation:
{10x - 26y = −38
{6x + 13y = 28
½[10x - 26y = −38]
{5x - 13y = −19 >> New Equation
{6x + 13y = 28
___________
[tex]\displaystyle \frac{11x}{11} = \frac{9}{11}[/tex]
[tex]\displaystyle x = \frac{9}{11}[/tex][Plug this back into both equations above to get the y-coordinate of 1 111⁄143]; [tex]\displaystyle 1\frac{111}{143} = y[/tex]
I am joyous to assist you anytime.