Respuesta :
A) The resultant force is 30.4 N at [tex]25.3^{\circ}[/tex]
B) The resultant force is 18.7 N at [tex]43.9^{\circ}[/tex]
Explanation:
A)
In order to find the resultant of the two forces, we must resolve each force along the x- and y- direction, and then add the components along each direction to find the components of the resultant.
The two forces are:
[tex]F_1 = 20 N[/tex] at [tex]0^{\circ}[/tex] above x-axis
[tex]F_2 = 15 N[/tex] at [tex]60^{\circ}[/tex] above y-axis
Resolving each force:
[tex]F_{1x}=F_1 cos \theta = (20)(cos 0)=20 N\\F_{1y}=F_1 sin \theta =(20)(sin 0)=0 N[/tex]
[tex]F_{2x}=F_2 cos \theta = (15)(cos 60)=7.5 N\\F_{2y}=F_2 sin \theta =(15)(sin 60)=13.0 N[/tex]
So, the components of the resultant are:
[tex]F_x = F_{1x}+F_{2x}=20+7.5 = 27.5 N\\F_y = F_{1y}+F_{2y}=0+13.0=13.0 N[/tex]
And the magnitude of the resultant is:
[tex]F=\sqrt{F_x^2+F_y^2}=\sqrt{27.5^2+13.0^2}=30.4 N[/tex]
And the direction is:
[tex]\theta=tan^{-1}(\frac{F_y}{F_x})=tan^{-1}(\frac{13.0}{27.5})=25.3^{\circ}[/tex]
B)
In this case, the 15 N is applied in the opposite direction to the 20 N force. Therefore we need to re-calculate its components, keeping in mind that the angle of the 15 N force this time is
[tex]\theta=180^{\circ}-60^{\circ}=120^{\circ}[/tex]
So we have:
[tex]F_{2x}=F_2 cos \theta = (15)(cos 120)=-7.5 N\\F_{2y}=F_2 sin \theta =(15)(sin 120)=13.0 N[/tex]
So, the components of the resultant this time are:
[tex]F_x = F_{1x}+F_{2x}=20-7.5 = 12.5 N\\F_y = F_{1y}+F_{2y}=0+13.0=13.0 N[/tex]
And the magnitude is:
[tex]F=\sqrt{F_x^2+F_y^2}=\sqrt{13.5^2+13.0^2}=18.7 N[/tex]
And the direction is:
[tex]\theta=tan^{-1}(\frac{F_y}{F_x})=tan^{-1}(\frac{13.0}{13.5})=43.9^{\circ}[/tex]
Learn more about vector addition:
brainly.com/question/4945130
brainly.com/question/5892298
#LearnwithBrainly