An alloy is evaluated for potential creep deformation in a short-term laboratory experiment. The creep rate is found to be 1% per hour at 800°C and 0.055% per hour at 700°C.
(a) Calculate the activation energy for creep in this temperature range.
(b) Estimate the creep rate to be expected at the service temperature of 500°C.

Respuesta :

Answer:

a) Q = 251.758 kJ/mol

b) creep rate is    [tex]= 1.751 \times 10^{-5} \% per hr[/tex]

Explanation:

we know Arrhenius expression is given as

[tex]\dot \epsilon =Ce^{\frac{-Q}{RT}[/tex]

where

Q is activation energy

C is pre- exponential constant

At 700 degree C creep rate is[tex] \dot \epsilon = 5.5\times 10^{-2} [/tex]% per hr

At 800 degree C  creep rate is[tex] \dot \epsilon = 1 [/tex]% per hr

activation energy for creep is [tex]\frac{\epsilon_{800}}{\epsilon_{700}}[/tex] = [tex]= \frac{C\times e^{\frac{-Q}{R(800+273)}}}{C\times e^{\frac{-Q}{R(700+273)}}}[/tex]

[tex]\frac{1\%}{5.5 \times 10^{-2}\%} = e^{[\frac{-Q}{R(800+273)}] -[\frac{-Q}{R(800+273)}]}[/tex]

[tex]\frac{0.01}{5.5\times 10^{-4}} = ln [e^{\frac{Q}{8.314}[\frac{1}{1073} - \frac{1}{973}]}][/tex]

solving for Q we get

Q = 251.758 kJ/mol

b) creep rate at 500 degree C

we know

[tex]C = \epsilon e^{\frac{Q}{RT}}[/tex]

    [tex]=- 1\% e{\frac{251758}{8.314(500+273}} = 1.804 \times 10^{12} \% per hr[/tex]

[tex]\epsilon_{500} = C e^{\frac{Q}{RT}}[/tex]

                         [tex]= 1.804 \times 10^{12}  e{\frac{251758}{8.314(500+273}}[/tex]

                         [tex]= 1.751 \times 10^{-5} \% per hr[/tex]