Answer:
a) Q = 251.758 kJ/mol
b) creep rate is [tex]= 1.751 \times 10^{-5} \% per hr[/tex]
Explanation:
we know Arrhenius expression is given as
[tex]\dot \epsilon =Ce^{\frac{-Q}{RT}[/tex]
where
Q is activation energy
C is pre- exponential constant
At 700 degree C creep rate is[tex] \dot \epsilon = 5.5\times 10^{-2} [/tex]% per hr
At 800 degree C creep rate is[tex] \dot \epsilon = 1 [/tex]% per hr
activation energy for creep is [tex]\frac{\epsilon_{800}}{\epsilon_{700}}[/tex] = [tex]= \frac{C\times e^{\frac{-Q}{R(800+273)}}}{C\times e^{\frac{-Q}{R(700+273)}}}[/tex]
[tex]\frac{1\%}{5.5 \times 10^{-2}\%} = e^{[\frac{-Q}{R(800+273)}] -[\frac{-Q}{R(800+273)}]}[/tex]
[tex]\frac{0.01}{5.5\times 10^{-4}} = ln [e^{\frac{Q}{8.314}[\frac{1}{1073} - \frac{1}{973}]}][/tex]
solving for Q we get
Q = 251.758 kJ/mol
b) creep rate at 500 degree C
we know
[tex]C = \epsilon e^{\frac{Q}{RT}}[/tex]
[tex]=- 1\% e{\frac{251758}{8.314(500+273}} = 1.804 \times 10^{12} \% per hr[/tex]
[tex]\epsilon_{500} = C e^{\frac{Q}{RT}}[/tex]
[tex]= 1.804 \times 10^{12} e{\frac{251758}{8.314(500+273}}[/tex]
[tex]= 1.751 \times 10^{-5} \% per hr[/tex]