Respuesta :
Answer:
28.3 ft/s
Explanation:
We are given that
Initial velocity of a car=[tex]u=0[/tex]
Acceleration of the car=[tex]a=3.22-0.004v^2[/tex]
We have to find the velocity [tex]v_B[/tex] at the bottom of the grade.
Distance covered by car=600 ft
We know that
Acceleration=a=[tex]\frac{dv}{dt}=\frac{dv}{ds}\times \frac{ds}{dt}=v\frac{dv}{ds}[/tex]
[tex]v=\frac{ds}{dt}[/tex]
[tex]ds=\frac{vdv}{a}[/tex]
Taking integration on both side and taking limit of s from 0 to 600 and limit of v from 0 to [tex]v_B[/tex]
[tex]\int_{0}^{600}ds=\int_{0}^{v_B}\frac{vdv}{3.22-0.004v^2}[/tex]
[tex][S]^{600}_{0}=-\frac{1}{0.008}[ln(3.22-0.004v^2)]^{v_B}_{0}[/tex]
Using substitution method and [tex]\int f(x)dx=F(b)-F(a)[/tex]
[tex]600-0=-\frac{1}{0.008}[ln(3.22-0.004v^2_B)-ln(3.22)][/tex]
[tex]600=-\frac{1}{0.008}(ln(\frac{3.22-0.04v_B}{3.22}))[/tex]
[tex]ln(m)-ln(n)=ln(\frac{m}{n})[/tex]
[tex]600\times 0.008=-ln(\frac{3.22-0.04v_B}{3.22})[/tex]
[tex]-4.8=ln(\frac{3.22-0.04v_B}{3.22})[/tex]
[tex]\frac{3.22-0.04v_B}{3.22}=e^{-4.8}[/tex]
[tex]ln x=y\implies x=e^y[/tex]
[tex]3.22-0.004v^2_B=3.22e^{-4.8}[/tex]
[tex]3.22-0.004v^2_B=0.0265[/tex]
[tex]3.22-0.0265=0.004v^2_B[/tex]
[tex]0.004v^2_B=3.22-0.0265=3.1935[/tex]
[tex]v_B=\sqrt{\frac{3.1935}{0.004}}=28.3 ft/s[/tex]
Hence, the velocity [tex]v_B[/tex] at the bottom of the grade=28.3 ft/s
The velocity of the car at the bottom of the grade is 28.37 ft/s.
What is acceleration?
Acceleration is the rate of change of velocity with time.
Motion of the car from top to bottom of the grade
The velocity of the car increases as the car moves downwards and it will be maximum when the car reaches equilibrium position. At equilibrium position (bottom of the grade) the acceleration will be zero but the velocity will be maximum.
a = 3.22 - 0.004v²
0 = 3.22 - 0.004v²
0.004v² = 3.22
v² = 3.22/0.004
v² = 805
v = √805
v = 28.37 ft/s
Thus, the velocity of the car at the bottom of the grade is 28.37 ft/s.
Learn more about acceleration here: https://brainly.com/question/14344386