Answer:
(a) x = 0.25 m
(b) v = 1.46 m/s
(c) v = 2.4 m/s
Explanation:
mass (m) = 10.3 kg
force from thrust (F) = 240 N
spring constant (k) = 400 N/m
stretch distance from thrust (y) = 30 cm = 0.3 m
acceleration due to gravity (g) = 9.8 m/s^{2}
(A) from mg = kx
compression (x) = mg/ k
x = [tex]\frac{10.3 x 9.8}{400}[/tex]
x = 0.25 m
(B) from the conservation of forces
(Fy) + (0.5k[tex]x^{2}[/tex]) = (0.5k[tex]y^{2}[/tex]) + mgh + (0.5m[tex]v^{2}[/tex])
v = [tex]\sqrt{[tex]\frac{(Fy) + (0.5k[tex]x^{2}[/tex]) - (0.5k[tex]y^{2}[/tex]) - mgh }{0.5m}[/tex]}[/tex]
v = [tex]\sqrt{[tex]\frac{(240 x 0.3) + (0.5 x 400 x [tex]0.25^{2}[/tex]) - (0.5 x 400 x [tex]0.3^{2}[/tex]) - (10.3 x 9.8 x (0.25 + 0.3)) }{0.5 x 10.3}[/tex]}[/tex]
v = 1.46 m/s
(C) if the rocket weren't attached to the spring, the conservation of energy equation becomes
(Fy) + (0.5k[tex]x^{2}[/tex]) = mgh + (0.5m[tex]v^{2}[/tex])
v = [tex]\sqrt{[tex]\frac{(Fy) + (0.5k[tex]x^{2}[/tex]) - mgh }{0.5m}[/tex]}[/tex]
v = [tex]\sqrt{[tex]\frac{(240 x 0.3) + (0.5 x 400 x [tex]0.25^{2}[/tex]) - (10.3 x 9.8 x (0.25 + 0.3)) }{0.5 x 10.3}[/tex]}[/tex]
v = 2.4 m/s