Respuesta :

Answer:

The coordinates of the lines when both lines meets at point is ( 0, 0 )

Step-by-step explanation:

Given as :

The two lines are

[tex]\frac{2}{3}[/tex]x + [tex]\frac{1}{6}[/tex]y = [tex]\frac{2}{3}[/tex]

And 4 x + y = 4

The coordinate of the lines are obtained when the two lines intersect

Let the coordinate of intersection points are ( x , y )

Now , The first lines as

[tex]\frac{2}{3}[/tex]x + [tex]\frac{1}{6}[/tex]y = [tex]\frac{2}{3}[/tex]

Or, Taking LCM we get ,

[tex]\frac{4x + y}{6}[/tex] = [tex]\frac{2}{3}[/tex]

Cross multiplication both sides

Or, 3 × ( 4 x + y ) = 2 × 6

Or,  3 × 4 x +  3 × y = 12

Or, 12 x + 3 y = 12          ...........A

Other line is 4 x + y = 4

i.e 3 × ( 4 x + y ) = 3 × 4

or, 12 x + 3 y = 12          .........B

Solving both the line equations

(12 x + 3 y ) - ( 12 x + 3 y ) = 12 - 12

I.e x = 0  and  y = 0

So coordinates are ( x , y )  =  ( 0 , 0 )

Hence The coordinates of the lines when both lines meets at point is ( 0, 0 ) Answer