Respuesta :

Answer:

[tex]\frac{(x+4)^2}{25}+\frac{(y+3)^2}{9}=1[/tex]

Step-by-step explanation:

Given:

Center of the ellipse is, [tex](h,k)=(-4,-3)[/tex]

Minor axis length is, [tex]2b=6[/tex]

A vertex of the ellipse is at (1, -3)

Now, distance between the center and the vertex is half of the length of the major axis.

Using distance formula for (-4, -3) and (1, -3), we get:

[tex]a=\sqrt{(1+4)^2+(-3+3)^2}=5[/tex]

Therefore, the value of half of major axis is, [tex]a=5[/tex]. Also,

[tex]2b=6\\b=\frac{6}{2}=3[/tex]

Now, equation of an ellipse with center [tex](h,k)[/tex] is given as:

[tex]\frac{(x-h)^2}{a^2}+\frac{(y-k)^2}{b^2}=1[/tex]

Plug in [tex]h=-4,k=-3,a=5,b=3[/tex] and determine the equation.

[tex]\frac{(x-(-4))^2}{5^2}+\frac{(y-(-3))^2}{3^2}=1\\\\\frac{(x+4)^2}{25}+\frac{(y+3)^2}{9}=1[/tex]

Therefore, the equation of the ellipse is:

[tex]\frac{(x+4)^2}{25}+\frac{(y+3)^2}{9}=1[/tex]