Respuesta :

Answer:

The value of r=[tex]\frac{-106}{47}[/tex]

The value of x=[tex]\frac{83}{32}[/tex]

Step-by-step explanation:

Given that,

A) [tex]\frac{2r-2}{7r+10} = \frac{9}{8}[/tex]

Now,

[tex]\frac{2r-2}{7r+10} = \frac{9}{8}[/tex]

8(2r-2)=9(7r+10)

16r-16=63r+90

-16-90=63r-16r

-(16+90)=47r

-106=47r

r=[tex]\frac{-106}{47}[/tex]

B) [tex]\frac{x+4}{9} = \frac{3(x-2)-1}{5}[/tex]

Now,

[tex]\frac{x+4}{9} = \frac{3(x-2)-1}{5}[/tex]

5(x+5)=9[3(x-2)-1]

5x+25=9[3x-6-1]

5x+25=9[3x-7]

5x+25=27x-63

25+63=27x+5x

83=32x

x=[tex]\frac{83}{32}[/tex]