Answer:
The value of r=[tex]\frac{-106}{47}[/tex]
The value of x=[tex]\frac{83}{32}[/tex]
Step-by-step explanation:
Given that,
A) [tex]\frac{2r-2}{7r+10} = \frac{9}{8}[/tex]
Now,
[tex]\frac{2r-2}{7r+10} = \frac{9}{8}[/tex]
8(2r-2)=9(7r+10)
16r-16=63r+90
-16-90=63r-16r
-(16+90)=47r
-106=47r
r=[tex]\frac{-106}{47}[/tex]
B) [tex]\frac{x+4}{9} = \frac{3(x-2)-1}{5}[/tex]
Now,
[tex]\frac{x+4}{9} = \frac{3(x-2)-1}{5}[/tex]
5(x+5)=9[3(x-2)-1]
5x+25=9[3x-6-1]
5x+25=9[3x-7]
5x+25=27x-63
25+63=27x+5x
83=32x
x=[tex]\frac{83}{32}[/tex]