To solve this problem it is necessary to apply the concepts related to the drag force.
By definition we know that drag force can be expressed as
[tex]F_D = \frac{1}{2} \rho C_D AV^2[/tex]
Where,
\rho = Density
[tex]C_D =[/tex]Drag Coefficient
A = Area
V = Velocity
Our values are given as
[tex]A = 2.5ft^2[/tex]
[tex]V = 88ft/s[/tex]
[tex]C_D = 0.9[/tex]
[tex]\rho = 0.0765lb/ft^3 \rightarrow[/tex] Air at normal temperature
Replacing at the equation we have,
[tex]F_D = \frac{1}{2} \rho C_D AV^2[/tex]
[tex]F_D = \frac{1}{2} (0.0765lb/ft^3) (0.9) (2.5ft^2) (88ft/s)^2[/tex]
[tex]F_D = 666.468lbf[/tex]
The aerodynamic drag force is 666.468Lbf