Answer:
Chlorine gas leaked = 20 g
Explanation:
Given: Molar mass of chlorine gas: m = 70.9 g/mol
Initial Mass of chlorine gas: w₁ = 65.5 g, Initial Absolute pressure: P₁ = 6 × 10⁵ Pa, Initial temperature: T₁ = 73 °C = 73 + 273 = 346 K (∵ 0°C = 273 K)
Final Absolute pressure: P₂ = 3.70 × 10⁵ Pa, Final temperature: T₂ = 34 °C = 34 + 273 = 307 K
Volume is constant
Final mass of chlorine gas: w₂ = ? g
Chlorine gas have leaked = w₁ - w₂ = ? g
Initial number of moles of chlorine gas: [tex]n_{1}= \frac{w_{1}}{m_{1}} =\frac{65.5 g}{70.9 g/mol} = 0.924 mole[/tex]
According to the Ideal gas law: P.V = n.R.T
∴ at constant volume,
[tex]\frac{n_{1}\times T_{1}}{P_{1}} = \frac{n_{2}\times T_{2}}{P_{2}}[/tex]
[tex]n_{2} = \frac{n_{1}\times T_{1} \times P_{2}}{P_{1} \times T_{2}}[/tex]
[tex]n_{2} = \frac{(0.924)\times (346 K) \times (3.70 \times 10^{5} Pa)}{(6 \times 10^{5} Pa) \times (307 K)} [/tex]
Final number of moles of chlorine gas: [tex]n_{2} = 0.642 = \frac{w_{2}}{m} [/tex]
⇒ Final mass of chlorine: [tex]w_{2} = 0.642 mol \times m = (0.642 mol) \times (70.9 g/mol) = 45.5 g[/tex]
Therefore, Chlorine gas leaked = w₁ - w₂ = 65.5 g - 45.5 g = 20 g