Answer:
i. g = 70°
ii. x = 85°
Step-by-step explanation:
Given:
Let first we name the triangle
i. ) Δ PQR , m∠ PRQ = 40°
ii. ) Δ ABC is a right angle at B and a line B- D-C
m∠ DAC = 25°
m∠ ACD = 60°
m∠ BDA = x°
To Find:
i. g = ?
ii. x = ?
Solution:
i.
In Δ PQR , PR ≅ QR ...........{Given]
∴ Δ PQR is an Isosceles Triangle.
c.........{ Base angles of Isosceles triangle are equal }
∴ m∠ PQR = m∠ RPQ = g
Now sum of all the angles in a triangle is 180°
∴ m∠ PQR + m∠ RPQ + m∠ PRQ = 180°....{Angle sum property of Triangle}
[tex]g + g + 40 = 180\\2g=180-40\\2g=140\\g=\frac{140}{2} \\g=70\°[/tex]
∴ g = 70°
ii.
We know sum of all the angles in a triangle is 180°
In Δ DAC
m∠ DAC + m∠ ACD + m∠ ADC = 180°.....{Angle sum property of Triangle}
[tex]25+60+ \angle ADC = 180\\[/tex]
[tex]\angle ADC = 180-85\\\angle ADC =95\\[/tex]
Now By Linear Pair Angle Property
m∠ ADB + m∠ ADC = 180° ........{Linear Pair Angle Property}
[tex]x+95=180\\x=180-95\\x=85[/tex]
∴ x = 85°