Answer:
Yes ,we can prove the two triangles are similar by angle angle test.
Step-by-step explanation:
Given:
∠ABE = 45°
∠EAB = 63° and
∠MNP= 72°
∠NMP = 63°
To Prove:
ΔABE ~ ΔMPN
Proof:
In a Triangle sum of the angles of a triangle is 180°
In ΔMPN
∴ ∠MNP + ∠NMP + ∠MPN = 180°
Substituting the given values we get,
[tex]72+63+\angle MPN = 180\\135 + \angle MPN = 180\\\angle MPN = 180-135\\\angle MPN = 45[/tex]
∠MPN = 45° ..........................( 1 )
Now,for triangles to be similar
In Δ ABE and Δ MPN
∠ ABE ≅ ∠ MPN = 45° ……….{From ( 1 ) and Given}
∠ EAB ≅ ∠ NMP = 63° ………...{Given}
Δ ABE ~ Δ MPN ….{Angle-Angle test}
..........Proved