Respuesta :

[tex]\frac{1+\tan x}{\sin x+\cos x}=\sec x[/tex] is proved

Solution:

Given that,

[tex]\frac{1+\tan x}{\sin x+\cos x}=\sec x[/tex]  ------- (1)

First we will simplify the LHS and then compare it with RHS

[tex]\text { L. H.S }=\frac{1+\tan x}{\sin x+\cos x}[/tex]  ------ (2)

[tex]\text {We know that } \tan x=\frac{\sin x}{\cos x}[/tex]

Substitute this in eqn (2)

[tex]=\frac{1+\frac{\sin x}{\cos x}}{\sin x+\cos x}[/tex]

On simplification we get,

[tex]=\frac{\frac{\sin x+\cos x}{\cos x}}{\sin x+\cos x}[/tex]

[tex]=\frac{\sin x+\cos x}{\cos x} \times \frac{1}{\sin x+\cos x}[/tex]

Cancelling the common terms (sinx + cosx)

[tex]=\frac{1}{c o s x}[/tex]

We know secant is inverse of cosine

[tex]=\sec x=R . H . S[/tex]

Thus L.H.S = R.H.S

[tex]\frac{1+\tan x}{\sin x+\cos x}=\sec x[/tex]

Hence proved