Respuesta :
Answer:
Part 1) [tex]x=\frac{g}{c}[/tex]
Part 2) [tex]a=\frac{1}{3b}[/tex]
Part 3) [tex]a=\frac{n+p}{m}[/tex]
Part 4) [tex]x=g-y+c[/tex]
Part 5) [tex]x=\frac{z}{m-1}[/tex]
Part 6) [tex]a=\frac{g+b}{c}[/tex]
Part 7) [tex]b=\frac{A}{h}[/tex]
Part 8) [tex]W=\frac{P}{2}-L[/tex]
Part 9) [tex]d=2Q-c[/tex]
Part 10) [tex]a=\frac{Q}{3+5c}[/tex]
Part 11) [tex]N=\frac{A)}{P-IR}[/tex]
Part 12) [tex]b=P-a-c[/tex]
Step-by-step explanation:
Part 1) we have
[tex]g=xc[/tex]
solve for x
That means---> Isolate the variable x
Divide by c both sides
[tex]\frac{g}{c}=\frac{xc}{c}[/tex]
simplify
[tex]x=\frac{g}{c}[/tex]
Part 2) we have
[tex]12ab=4[/tex]
solve for a
That means---> Isolate the variable a
Divide by 12b both sides
[tex]\frac{12ab}{12b}=\frac{4}{12b}[/tex]
simplify
[tex]a=\frac{1}{3b}[/tex]
Part 3) we have
[tex]am=n+p[/tex]
solve for a
That means---> Isolate the variable a
Divide by m both sides
[tex]\frac{am}{m}=\frac{n+p}{m}[/tex]
simplify
[tex]a=\frac{n+p}{m}[/tex]
Part 4) we have
[tex]g=x-c+y[/tex]
solve for x
That means---> Isolate the variable x
Subtract y both sides
[tex]g-y=x-c+y-y[/tex]
[tex]g-y=x-c[/tex]
Adds c both sides
[tex]g-y+c=x-c+c[/tex]
[tex]g-y+c=x[/tex]
rewrite
[tex]x=g-y+c[/tex]
Part 5) we have
[tex]xm=x+z[/tex]
solve for x
That means---> Isolate the variable x
Subtract x both sides
[tex]xm-x=x+z-x[/tex]
[tex]xm-x=z[/tex]
Factor x left side
[tex]x(m-1)=z[/tex]
Divide by (m-1) both sides
[tex]\frac{x(m-1)}{m-1}=\frac{z}{m-1}[/tex]
[tex]x=\frac{z}{m-1}[/tex]
Part 6) we have
[tex]g=ca-b[/tex]
solve for a
That means---> Isolate the variable a
Adds b both sides
[tex]g+b=ca-b+b[/tex]
[tex]g+b=ca[/tex]
Divide by c both sides
[tex]\frac{g+b}{c}=\frac{ca}{c}[/tex]
[tex]a=\frac{g+b}{c}[/tex]
Part 7) we have
[tex]A=bh[/tex]
solve for b
That means---> Isolate the variable b
Divide by h both sides
[tex]\frac{A}{h}=\frac{bh}{h}[/tex]
simplify
[tex]b=\frac{A}{h}[/tex]
Part 8) we have
[tex]P=2L+2W[/tex]
solve for W
That means---> Isolate the variable W
Subtract 2L both sides
[tex]P-2L=2L+2W-2L[/tex]
simplify
[tex]P-2L=2W[/tex]
Divide by 2 both sides
[tex]\frac{P-2L}{2}=\frac{2W}{2}[/tex]
simplify
[tex]W=\frac{P-2L}{2}[/tex]
[tex]W=\frac{P}{2}-L[/tex]
Part 9) we have
[tex]Q=\frac{c+d}{2}[/tex]
solve for d
That means---> Isolate the variable d
Multiply by 2 both sides
[tex]2Q=(2)\frac{c+d}{2}[/tex]
simplify
[tex]2Q=c+d[/tex]
subtract c both sides
[tex]2Q-c=c+d-c[/tex]
[tex]2Q-c=d[/tex]
rewrite
[tex]d=2Q-c[/tex]
Part 10) we have
[tex]Q=3a+5ac[/tex]
solve for a
That means---> Isolate the variable a
Factor the variable a in the right side
[tex]Q=a(3+5c)[/tex]
Divide by (3+5c) both sides
[tex]\frac{Q}{3+5c}=\frac{a(3+5c)}{3+5c}[/tex]
simplify
[tex]a=\frac{Q}{3+5c}[/tex]
Part 11) we have
[tex]I=\frac{PN}{RN+A}[/tex]
solve for N
That means---> Isolate the variable N
Multiply in cross
[tex]I(RN+A)=PN[/tex]
Apply distributive property left side
[tex]IRN+AI=PN[/tex]
subtract PN both sides
[tex]IRN+AI-PN=PN-PN[/tex]
[tex]IRN+AI-PN=0[/tex]
subtract AI both sides
[tex]IRN+AI-PN-AI=-AI[/tex]
[tex]IRN-PN=-AI[/tex]
Factor N left side
[tex]N(IR-P)=-AI[/tex]
Divide by (IR-P) both sides
[tex]\frac{N(IR-P)}{IR-P}=-\frac{A}{IR-P}[/tex]
simplify
[tex]N=-\frac{A}{IR-P}[/tex]
[tex]N=\frac{A}{P-IR}[/tex]
Part 12) we have
[tex]P=a+b+c[/tex]
solve for b
That means---> Isolate the variable b
subtract (a+c) both sides
[tex]P-(a+c)=a+b+c-(a+c)[/tex]
simplify
[tex]P-(a+c)=b[/tex]
rewrite
[tex]b=P-a-c[/tex]