Answer:
The % of displaced volume of nitrogen is 29.06%.
Explanation:
Volume of nitrogen = 1.2 L = 1200 mL
Density of nitrogen = 0.807 g/ml
Mass of nitrogen = [tex]Density \times Volume= 0.807 \times 1200 = 1044 g[/tex]
Molar mass of nitrogen = 28 g/mol
[tex]Number\,of\,moles\,nitrogen=\frac{Mass}{Molar\,mass}[/tex]
[tex]= \frac{1044}{28}=37.28[/tex]
The ideal gas equation is as follows
[tex]PV = nRT[/tex]
Rearrange the equation is as follows.
[tex]V= \frac{nRT}{P}...............(1)[/tex]
n= Number of moles = 37.28
R = Gas constant = 0.0820
T = Temperature = 22+ 273 = 295
P = Pressure = 1.2 atm
Substitute the all values in equation (1)
[tex]V= \frac{37.28 \times 0.0820 \times 295 }{1.2}= 751.5L= 0.751 \,m^{3}[/tex]
[tex]0.751 \,m^{3}[/tex] of nitrogen will displace same amount of air.
[tex]Volume \,\,of\,\, closet= 1 \times 1.3 \times 2 = 2.6\,m^{3}[/tex]
[tex]%\,displaced\,volume=\frac{0.751}{2.6}=28.8%[/tex]
Therefore, The % of displaced volume of nitrogen is 29.06%.