A film of paint 3 mm thick is applied to a surface inclined above the horizontal at an angle \theta. The paint has rheological properties of a Bingham plastic with yield stress 15 Pa and \mu[infinity]= 60 cP. With a specific gravity of 1.3, at what angle \ theta will the paint start to flow down the surface?

Respuesta :

Answer:

[tex]\theta = 23.083 degree[/tex]

Explanation:

Given data:

yield stress [tex]\tau_y  = 15 Pa[/tex]

thickness t = 3 mm

[tex]\mu = 60 cP = 60\times 10^{-2} P[/tex]

G= 1.3

[tex]\rho_{point} = G \times \rho_{water}[/tex]

                     [tex]=1.3 \times 1000 = 1300 kg/m^3[/tex]

[tex]\tau = \tau_y + mu \frac{du}{dy}[/tex]

for point flow [tex]\frac{du}{dy} = 0[/tex]

[tex]\tau = \tau_y = 15 N/m^2[/tex]

[tex]\tau = \frac{force}{area}[/tex]

       [tex]= \frac{weight of point . sin\theta}{area} = \frac{\rho_{point} . volume. sin\theta}{area}[/tex][/tex]

[tex]15 = \frac{1300 \times 9.8 \times A\times t \times sin\theta}{A}[/tex]

solving for theta value

[tex]sin\theta = 0.392[/tex]

[tex]\theta =sin^{-1} 0.392[/tex]

[tex]\theta = 23.083 degree[/tex]