Answer:
[tex]\theta = 23.083 degree[/tex]
Explanation:
Given data:
yield stress [tex]\tau_y = 15 Pa[/tex]
thickness t = 3 mm
[tex]\mu = 60 cP = 60\times 10^{-2} P[/tex]
G= 1.3
[tex]\rho_{point} = G \times \rho_{water}[/tex]
[tex]=1.3 \times 1000 = 1300 kg/m^3[/tex]
[tex]\tau = \tau_y + mu \frac{du}{dy}[/tex]
for point flow [tex]\frac{du}{dy} = 0[/tex]
[tex]\tau = \tau_y = 15 N/m^2[/tex]
[tex]\tau = \frac{force}{area}[/tex]
[tex]= \frac{weight of point . sin\theta}{area} = \frac{\rho_{point} . volume. sin\theta}{area}[/tex][/tex]
[tex]15 = \frac{1300 \times 9.8 \times A\times t \times sin\theta}{A}[/tex]
solving for theta value
[tex]sin\theta = 0.392[/tex]
[tex]\theta =sin^{-1} 0.392[/tex]
[tex]\theta = 23.083 degree[/tex]