Respuesta :
Answer:
61578948 m/s
Explanation:
λ[tex]_{actual}[/tex] = λ[tex]_{observed}[/tex] [tex]\frac{c+v_{o}}{c}[/tex]
687 = 570 [tex](\frac{3 * 10^{8} +v_{o} }{3 * 10^{8}} )[/tex]
[tex]v_{o}[/tex] = 61578948 m/s
So Slick Willy was travelling at a speed of 61578948 m/s to observe this.
Answer:
[tex]6.11*10^7m/s[/tex]
Explanation:
The Doppler effect formula for an observer approaching a source is given by equation (1);
[tex]f_o=\frac{f(v+v_o)}{v-v_s}...................(1)[/tex]
where [tex]f_o[/tex] is the frequency perceived by the observer, v is the actual velocity of the wave in air, [tex]v_o[/tex] is the velocity of the observer, [tex]v_s[/tex] is the velocity of the source and [tex]f[/tex] is the actual frequency of the wave.
The actual velocity v of light in air is [tex]3*10^8m/s[/tex]. The relationship between velocity, frequency and wavelength [tex]\lambda[/tex] is given by equation (2);
[tex]v=\lambda f...........(2)[/tex]
therefore;
[tex]f=\frac{v}{\lambda}...............(3)[/tex]
We therefore use equation (3) to find the actual frequency of light emitted and the frequency perceived by Slick Willy.
Actual wavelength [tex]\lambda[/tex] of light emitted is 678nm, hence actual frequency is
given by;
[tex]f=\frac{3*10^8}{687*10^{-9}}\\f=4.37*10^{14}Hz[/tex]
Also, the frequency perceived by Slick Willy is given thus;
[tex]f_o=\frac{3*10^8}{570*10^{-9}}\\f=5,26*10^{14}Hz[/tex]
The velocity [tex]v_s[/tex] of the source light is zero since the traffic light was stationary. Substituting all parameters into equation (1), we obtain the following;
[tex]5.26*10^{14}=\frac{4.37*10^{14}(3*10^{8}+v_o)}{3*10^8-0}[/tex]
We then simplify further to get [tex]v_o[/tex]
[tex]10^{14}[/tex] cancels out from both sides, so we obtain the following;
[tex]5.26*3*10^8=4.37(3*10^8+v_o)[/tex]
[tex]15.78*10^8=13.11*10^8+4.37v_o\\4.37v_o=15.78*10^8-13.11*10^8\\4.37v_o=2.67*10^8[/tex]
Hence;
[tex]v_o=\frac{2.67*10^8}{4.37}\\v_o=6.11*10^7m/s[/tex]