What is the quotient StartFraction 15 p Superscript negative 4 Baseline q Superscript negative 6 Baseline Over negative 20 p Superscript negative 12 Baseline q Superscript negative 3 Baseline EndFraction in simplified form? Assume p not-equals 0, q not-equals 0. Negative StartFraction 3 p Superscript 8 Baseline Over 4 q cubed EndFraction Negative StartFraction 3 Over 4 p Superscript 16 Baseline q Superscript 9 Baseline EndFraction Negative StartFraction p Superscript 8 Baseline Over 5 q cubed EndFraction Negative StartFraction 1 Over 5 p Superscript 16 Baseline q Superscript 9 Baseline EndFraction

What is the quotient StartFraction 15 p Superscript negative 4 Baseline q Superscript negative 6 Baseline Over negative 20 p Superscript negative 12 Baseline q class=
What is the quotient StartFraction 15 p Superscript negative 4 Baseline q Superscript negative 6 Baseline Over negative 20 p Superscript negative 12 Baseline q class=

Respuesta :

Answer:

[tex]- \frac{3}{4} \times  \frac{p^{8} }{q^{3} }[/tex]

Step-by-step explanation:

We have to find the quotient of the following division, [tex]\frac{15p^{-4}q^{-6} }{- 20p^{-12} q^{-3}}[/tex].

Now, [tex]\frac{15p^{-4}q^{-6} }{- 20p^{-12} q^{-3}}[/tex]

= [tex]- \frac{3}{4} p^{[- 4 - (- 12)]} q^{[-6 - (- 3)]}[/tex] {Since all the terms in the expression are in product form, so we can treat them separately}

{Since we know the property of exponent as [tex]\frac{a^{b} }{a^{c} } = a^{(b - c)}[/tex]}

= [tex]- \frac{3}{4} p^{8} q^{-3}[/tex]

= [tex]- \frac{3}{4} \times  \frac{p^{8} }{q^{3} }[/tex] (Answer)

{Since we know, [tex]a^{-b} = \frac{1}{a^{b} }[/tex]}

can be simplified to

[tex]-\frac{3p^8}{4q^3}[/tex]

Hopes this helps

if not then I'm sorrr