Respuesta :
Answer:
[tex]- \frac{3}{4} \times \frac{p^{8} }{q^{3} }[/tex]
Step-by-step explanation:
We have to find the quotient of the following division, [tex]\frac{15p^{-4}q^{-6} }{- 20p^{-12} q^{-3}}[/tex].
Now, [tex]\frac{15p^{-4}q^{-6} }{- 20p^{-12} q^{-3}}[/tex]
= [tex]- \frac{3}{4} p^{[- 4 - (- 12)]} q^{[-6 - (- 3)]}[/tex] {Since all the terms in the expression are in product form, so we can treat them separately}
{Since we know the property of exponent as [tex]\frac{a^{b} }{a^{c} } = a^{(b - c)}[/tex]}
= [tex]- \frac{3}{4} p^{8} q^{-3}[/tex]
= [tex]- \frac{3}{4} \times \frac{p^{8} }{q^{3} }[/tex] (Answer)
{Since we know, [tex]a^{-b} = \frac{1}{a^{b} }[/tex]}
can be simplified to
[tex]-\frac{3p^8}{4q^3}[/tex]
Hopes this helps
if not then I'm sorrr