. Using the Newton Raphson method, determine the uniform flow depth in a trapezoidal channel with a bottom width of 3.0 m and side slope of 1:2 (v:h) with a discharge of 10 (m3/s). The slope is 0.0004 and Manning's roughness is 0.015.

Respuesta :

Answer:

y  ≈ 2.5

Explanation:

Given data:

bottom width is 3 m

side slope is 1:2

discharge is 10 m^3/s

slope is 0.004

manning roughness coefficient is 0.015

manning equation is written as

[tex]v =1/n R^{2/3} s^{1/2}[/tex]

where R is hydraulic radius

S = bed slope

[tex]Q = Av =A 1/n R^{2/3} s^{1/2}[/tex]

[tex]A = 1/2 \times (B+B+4y) \times y =(B+2y) y[/tex]

[tex]R =\frac{A}{P}[/tex]

P is perimeter [tex]=  (B+2\sqrt{5} y)[/tex]

[tex]R =\frac{(3+2y) y}{(3+2\sqrt{5} y)}[/tex]

[tex]Q = (2+2y) y) \times 1/0.015 [\frac{(3+2y) y}{(3+2\sqrt{5} y)}]^{2/3} 0.004^{1/2}[/tex]

solving for y[tex]100 =(2+2y) y) \times (1/0.015) [\frac{(3+2y) y}{(3+2\sqrt{5} y)}]^{2/3} \times 0.004^{1/2}[/tex]

solving for y value by using iteration method ,we get

y  ≈ 2.5