Compute the line integral with respect to arc length of the function f(x, y, z) = xy2 along the parametrized curve that is the line segment from (1, 1, 1) to (2, 2, 2) followed by the line segment from (2, 2, 2) to (−9, 6, 5).

Respuesta :

Answer:

[tex]\displaystyle\frac{15\sqrt{3}}{4}-90\sqrt{146}[/tex]

Step-by-step explanation:

The line integral with respect to arc length of the function f(x, y, z) = xy2 along the parametrized curve that is the line segment from (1, 1, 1) to (2, 2, 2) followed by the line segment from (2, 2, 2) to (−9, 6, 5) equals the sum of the line integral of f along each path separately.

Let  

[tex]C_1,C_2[/tex]  

be the two paths.

Recall that if we parametrize a path C as [tex](r_1(t),r_2(t),r_3(t))[/tex] with the parameter t varying on some interval [a,b], then the line integral with respect to arc length of a function f is

[tex]\displaystyle\int_{C}f(x,y,z)ds=\displaystyle\int_{a}^{b}f(r_1,r_2,r_3)\sqrt{(r'_1)^2+(r'_2)^2+(r'_3)^2}dt[/tex]

Given any two points P, Q we can parametrize the line segment from P to Q as

r(t) = tQ + (1-t)P with 0≤ t≤ 1

The parametrization of the line segment from (1,1,1) to (2,2,2) is

r(t) = t(2,2,2) + (1-t)(1,1,1) = (1+t, 1+t, 1+t)

r'(t) = (1,1,1)

and  

[tex]\displaystyle\int_{C_1}f(x,y,z)ds=\displaystyle\int_{0}^{1}f(1+t,1+t,1+t)\sqrt{3}dt=\\\\=\sqrt{3}\displaystyle\int_{0}^{1}(1+t)(1+t)^2dt=\sqrt{3}\displaystyle\int_{0}^{1}(1+t)^3dt=\displaystyle\frac{15\sqrt{3}}{4}[/tex]

The parametrization of the line segment from (2,2,2) to  

(-9,6,5) is

r(t) = t(-9,6,5) + (1-t)(2,2,2) = (2-11t, 2+4t, 2+3t)  

r'(t) = (-11,4,3)

and  

[tex]\displaystyle\int_{C_2}f(x,y,z)ds=\displaystyle\int_{0}^{1}f(2-11t,2+4t,2+3t)\sqrt{146}dt=\\\\=\sqrt{146}\displaystyle\int_{0}^{1}(2-11t)(2+4t)^2dt=-90\sqrt{146}[/tex]

Hence

[tex]\displaystyle\int_{C}f(x,y,z)ds=\displaystyle\int_{C_1}f(x,y,z)ds+\displaystyle\int_{C_2}f(x,y,z)ds=\\\\=\boxed{\displaystyle\frac{15\sqrt{3}}{4}-90\sqrt{146}}[/tex]

The line integral with respect to the arc length of the function is mathematically given as

= −1080.97

What is the line integral with respect to the arc length of the function?

Question Parameter(s):

The line integral with respect to arc length of the function f(x, y, z) = xy2

the line segment from (1, 1, 1) to (2, 2, 2)

the line segment from (2, 2, 2) to (−9, 6, 5).

Generally, the equation for the line integral   is mathematically given as

[tex]\int_C f(x,y,z)ds= \int_a^ b f(r_1,r_2,r_3) *\sqrt{(r'_1)^2+(r'_2)^2+(r'_3)^2}dt[/tex]

Therefore

[tex]\int_{C_1}f(x,y,z)ds=int_{0}^{1}f(1+t,1+t,1+t)\sqrt{3}dt\\\\\int_{C_1}f(x,y,z)ds=\sqrt{3} * \int_{0}^{1}(1+t)(1+t)^2dt\\\\[/tex]

[tex]\int_{C_1}f(x,y,z)ds=\sqrt{3} \int_{0}^{1}(1+t)^3dt\\\\\int_{C_1}f(x,y,z)ds=6.495[/tex]

r(t) = t(-9,6,5) + (1-t)(2,2,2)

r(t) = (-11,4,3)

then,

[tex]\displaystyle\int_{C_2}f(x,y,z)ds\\=\displaystyle\int_{0}^{1}f(2-11t,2+4t,2+3t)\sqrt{146}dt\\\\=-90\sqrt{146}[/tex]

thus,

[tex]\displaystyle\int_{C}f(x,y,z)ds=\displaystyle\int_{C_1}f(x,y,z)ds+\displaystyle\int_{C_2}f(x,y,z)ds=\\\\={\displaystyle\frac{15\sqrt{3}}{4}-90\sqrt{146}}[/tex]

In conclusion, considring the (2,2,2) segment

[tex]\displaystyle\int_{C}f(x,y,z)ds=\displaystyle\int_{C_1}f(x,y,z)ds+\displaystyle\int_{C_2}f(x,y,z)ds=\\\\={\displaystyle\frac{15\sqrt{3}}{4}-90\sqrt{146}}[/tex]

= −1080.97

Read more about Angle

https://brainly.com/question/14362353