A 0.32 kg turntable of radius 0.18 m spins about a vertical axis through its center. A constant rotational acceleration causes the turntable to accelerate from 0 to 24 revolutions per second in 8.0 s. [Hint: model the turntable has a uniform density disk.] What is the rotational acceleration of the turntable

Respuesta :

Answer:[tex]18.85 rad/s^2[/tex]

Explanation:

Given

mass of turntable [tex]m=0.32 kg[/tex]

radius [tex]r=0.18 m[/tex]

[tex]N=24 rev/s[/tex]

[tex]\omega =2\pi N=2\pi 24[/tex]

[tex]\omega =48\pi rad/s[/tex]

time interval [tex]t=8 s[/tex]

using [tex]\omega =\omeag _0+\alpha t[/tex]

where [tex]\omega =final\ angular\ velocity[/tex]

[tex]\omega _0=initial\ angular\ velocity[/tex]

[tex]\alpha =angular\ acceleration[/tex]

[tex]t=time[/tex]

[tex]48\pi =0+\alpha \times 8[/tex]

[tex]\alpha =6\pi rad/s^2[/tex]

[tex]\alpha =18.85 rad/s^2[/tex]