Answer:
a) 0.4164
Step-by-step explanation:
Mean lifespan (μ) = 18.8 days
Standard deviation (σ) = 2 days
For any given lifespan 'X', the z-score is:
[tex]z=\frac{X- \mu}{\sigma} \\z=\frac{X- 18.8}{2}[/tex]
For X=12.04 days:
[tex]z=\frac{12.04 - 18.8}{2} \\z=-3.38[/tex]
A z-score of -3.38 falls in the 0.036-th percentile of a normal distribution.
For X=18.38 days:
[tex]z=\frac{18.38 - 18.8}{2} \\z=-0.21[/tex]
A z-score of -3.38 falls in the 41.68th percentile of a normal distribution.
The probability that a butterfly lives between 12.04 and 18.38 days is
[tex]P=41.68-0.036\\P=41.64\%\ or\ 0.4164[/tex]