Respuesta :
Answer:
[tex]5.788\times 10^{-9} m[/tex] is the uncertainty in the position of a moving electron.
Explanation:
Heisenberg's uncertainty principle is given by the equation:
[tex]\Delta x\times m\times \Delta v=\frac{h}{4\pi}[/tex]
The mass of an electron = m
Uncertainty in velocity = Δv
Uncertainty in position = Δx
h = Planck's constant
We are given:
The mass of an electron = m = [tex]9.11\times 10^{-31} kg[/tex]
Uncertainty in velocity = Δv = [tex]0.01 \times 10^6 m/s[/tex]
Uncertainty in position = Δx
[tex]\Delta x=\frac{h}{4\pi \times m\times \Delta v}[/tex]
[tex]=\frac{6.626\times 10^{-34} Js}{4\times 3.14\times 9.11\times 10^{-31} kg\times 0.01 \times 10^6 m/s}[/tex]
[tex]=5.788\times 10^{-9} m[/tex]
[tex]5.788\times 10^{-9} m[/tex] is the uncertainty in the position of a moving electron.
The uncertainty in the position of an electron is equal to [tex]5.76 \times 10^{-9}\; meters[/tex]
Given the following data:
- Mass of an electron = [tex]9.11 \times 10^{-31}[/tex] kg
- Uncertainty in velocity = [tex]0.01 \times 10^{6}[/tex] m/s
To find the uncertainty in the position of an electron, we would use Heisenberg's uncertainty principle:
Mathematically, Heisenberg's uncertainty principle of an object is given by the formula:
[tex]\Delta x \times m \times \Delta v = \frac{h}{4\pi }[/tex]
Where:
- [tex]\Delta x[/tex] is the uncertainty in position.
- m is the mass of an object.
- [tex]\Delta v[/tex] is the uncertainty in velocity.
- h is Planck constant ([tex]6.626 \times 10^{-34}[/tex]).
Making [tex]\Delta x[/tex] the subject of formula, we have:
[tex]\Delta x = \frac{h}{4\pi \times m \times \Delta v}[/tex]
Substituting the given parameters into the formula, we have;
[tex]\Delta x = \frac{6.626 \times 10^{-34}}{4\times \;3.142 \;\times \;9.11 \times 10^{-31}\; \times \;0.01 \;\times 10^{6}}\\\\\Delta x = \frac{6.626 \times 10^{-34}}{1.15 \times 10^{-25}}\\\\\Delta x = 5.76 \times 10^{-9}\; meters[/tex]
Read more: https://brainly.com/question/16901506