German physicist Werner Heisenberg related the uncertainty of an object's position ( Δ x ) (Δx) to the uncertainty in its velocity ( Δ v ) (Δv) Δ x ≥ h 4 π m Δ v Δx≥h4πmΔv where h h is Planck's constant and m m is the mass of the object. The mass of an electron is 9.11 × 10 − 31 kg. 9.11×10−31 kg. What is the uncertainty in the position of an electron moving at 6.00 × 10 6 m/s 6.00×106 m/s with an uncertainty of Δ v = 0.01 × 10 6 m/s ?

Respuesta :

Answer:

[tex]5.788\times 10^{-9} m[/tex] is the uncertainty in the position of a moving electron.

Explanation:

Heisenberg's uncertainty principle is given by the equation:

[tex]\Delta x\times m\times \Delta v=\frac{h}{4\pi}[/tex]

The mass of an electron = m

Uncertainty in velocity =  Δv

Uncertainty in position =  Δx

h = Planck's constant

We are given:

The mass of an electron = m = [tex]9.11\times 10^{-31} kg[/tex]

Uncertainty in velocity =  Δv = [tex]0.01 \times 10^6 m/s[/tex]

Uncertainty in position =  Δx

[tex]\Delta x=\frac{h}{4\pi \times m\times \Delta v}[/tex]

[tex]=\frac{6.626\times 10^{-34} Js}{4\times 3.14\times 9.11\times 10^{-31} kg\times 0.01 \times 10^6 m/s}[/tex]

[tex]=5.788\times 10^{-9} m[/tex]

[tex]5.788\times 10^{-9} m[/tex] is the uncertainty in the position of a moving electron.

Lanuel

The uncertainty in the position of an electron is equal to [tex]5.76 \times 10^{-9}\; meters[/tex]

Given the following data:

  • Mass of an electron = [tex]9.11 \times 10^{-31}[/tex] kg
  • Uncertainty in velocity = [tex]0.01 \times 10^{6}[/tex] m/s

To find the uncertainty in the position of an electron, we would use Heisenberg's uncertainty principle:

Mathematically, Heisenberg's uncertainty principle of an object is given by the formula:

[tex]\Delta x \times m \times \Delta v = \frac{h}{4\pi }[/tex]

Where:

  • [tex]\Delta x[/tex] is the uncertainty in position.
  • m is the mass of an object.
  • [tex]\Delta v[/tex] is the uncertainty in velocity.
  • h is Planck constant ([tex]6.626 \times 10^{-34}[/tex]).

Making [tex]\Delta x[/tex] the subject of formula, we have:

[tex]\Delta x = \frac{h}{4\pi \times m \times \Delta v}[/tex]

Substituting the given parameters into the formula, we have;

[tex]\Delta x = \frac{6.626 \times 10^{-34}}{4\times \;3.142 \;\times \;9.11 \times 10^{-31}\; \times \;0.01 \;\times 10^{6}}\\\\\Delta x = \frac{6.626 \times 10^{-34}}{1.15 \times 10^{-25}}\\\\\Delta x = 5.76 \times 10^{-9}\; meters[/tex]

Read more: https://brainly.com/question/16901506