Answer:
The equation of the line is [tex]y+2x=4[/tex]
Step-by-step explanation:
The table shown below is :
[tex]\left[\begin{array}{ccc}x&y\\-1&6\\0&4\\1&2\end{array}\right][/tex]
thus , to find the equation of the line ,
we use the formula :
[tex]\frac{y-y_{1} }{x-x_{1} } = \frac{y_{2} - y_{3} }{x_{2} -x_{3} }[/tex]
where,
[tex]x[/tex] and [tex]y[/tex] are the variables.
[tex]x_{1} =-1 ; y_{1} = 6; \\x_{2}=0; y_{2} = 4;\\ x_{3}=1 ; y_{3} = 2 ;[/tex]
substituting the values in the equation, we get ,
[tex]\frac{y-6}{x-(-1)} = \frac{4-2}{0-1} \\\frac{y-6}{x+1} = \frac{2}{-1} \\y-6=-2*(x+1)\\y-6= -2x-2\\y+2x=4[/tex]
∴ The equation of the line is [tex]y+2x=4[/tex]