Answer:
n = 8, w = 3 and perimeter = 122.83 units.
Step-by-step explanation:
Let the angle M is the angle between the equal sides of isosceles JAM.
So, JM = MA
⇒ 35 = 4n + 3
⇒ 4n = 32
⇒ n = 8 (Answer)
Now, if ∠ J = 14w - 1 and ∠ M = 98°, then
2(14w - 1) + 98 = 180
⇒ 2(14w - 1) = 82
⇒ 14w - 1 = 41
⇒ w = 3 (Answer)
Now, draw a perpendicular bisector on JA from vertex M and it meets JA at P say.
So, Δ MPJ will be a right triangle with ∠ J = (14w - 1) = 41° {Since w = 3}
Hence, [tex]\cos 41 = \frac{JP}{JM} = \frac{JP}{35}[/tex]
⇒ JP = 35 cos 41 = 26.415
So, JA = 2 × JP = 52.83
So, the perimeter of Δ JAM is = 35 × 2 + 52.83 = 122.83 units (Answer)