Respuesta :
Answer:
Part a)
[tex]U = 13 J[/tex]
Part b)
[tex]v = 2.28 m/s[/tex]
Part c)
[tex]v = 177.66 m/s[/tex]
Part d)
[tex]W = 1012.7 J[/tex]
Part e)
[tex]v = 2.1 m/s[/tex]
Part f)
[tex]E = 1037.2 J[/tex]
Explanation:
Part a)
As we know that the maximum angle deflected by the pendulum is
[tex]\theta = 38^o[/tex]
so the maximum height reached by the pendulum is given as
[tex]h = L(1 - cos\theta)[/tex]
so we will have
[tex]h = L(1 - cos38)[/tex]
[tex]h = 1.25(1 - cos38)[/tex]
[tex]h = 0.265 m[/tex]
now gravitational potential energy of the pendulum is given as
[tex]U = mgh[/tex]
[tex]U = 5(9.81)(0.265)[/tex]
[tex]U = 13 J[/tex]
Part b)
As we know that there is no energy loss while moving upwards after being stuck
so here we can use mechanical energy conservation law
so we have
[tex]mgh = \frac{1}{2}mv^2[/tex]
[tex]v = \sqrt{2gh}[/tex]
[tex]v = \sqrt{2(9.81)(0.265)}[/tex]
[tex]v = 2.28 m/s[/tex]
Part c)
now by momentum conservation we can say
[tex]mv = (M + m) v_f[/tex]
[tex]0.065 v = (5 + 0.065)2.28[/tex]
[tex]v = 177.66 m/s[/tex]
Part d)
Work done by the bullet is equal to the change in kinetic energy of the system
so we have
[tex]W = \frac{1}{2}mv^2 - \frac{1}{2}(m + M)v_f^2[/tex]
[tex]W = \frac{1}{2}(0.065)(177.66)^2 - \frac{1}{2}(5 + 0.065)2.28^2[/tex]
[tex]W = 1012.7 J[/tex]
Part e)
recoil speed of the gun can be calculated by momentum conservation
so we will have
[tex]0 = mv_1 + Mv_2[/tex]
[tex]0 = 0.065(177.6) + 5.50 v[/tex]
[tex]v = 2.1 m/s[/tex]
Part f)
Total energy released in the process of shooting of gun
[tex]E = \frac{1}{2}Mv^2 + \frac{1}{2}mv_1^2[/tex]
[tex]E = \frac{1}{2}(5.50)(2.1^2) + \frac{1}{2}(0.065)(177.6^2)[/tex]
[tex]E = 1037.2 J[/tex]