Answer:
The equation of the time-dependent function of the position is [tex]x(t)=5\cos(8.08t)[/tex]
(b) is correct option.
Explanation:
Given that,
Length = 12 cm
Mass = 200 g
Extend distance = 27 cm
Distance = 5 cm
Phase angle =0°
We need to calculate the spring constant
Using formula of restoring force
[tex]F=kx[/tex]
[tex]mg=kx[/tex]
[tex]k=\dfrac{mg}{x}[/tex]
[tex]k=\dfrac{200\times10^{-3}\times9.8}{(27-12)\times10^{2}}[/tex]
[tex]k=13.06\ N/m[/tex]
We need to calculate the time period
Using formula of time period
[tex]T=2\pi\sqrt{\dfrac{m}{k}}[/tex]
Put the value into the formula
[tex]T=2\pi\sqrt{\dfrac{0.2}{13.6}}[/tex]
[tex]T=0.777\ sec[/tex]
At t = 0, the maximum displacement was 5 cm
So, The equation of the time-dependent function of the position
[tex]x(t)=A\cos(\omega t)[/tex]
Put the value into the formula
[tex]x(t)=5\cos(2\pi\times f\times t)[/tex]
[tex]x(t)=5\cos(2\pi\times\dfrac{1}{T}\times t)[/tex]
[tex]x(t)=5\cos(2\pi\times\dfrac{1}{0.777}\times t)[/tex]
[tex]x(t)=5\cos(8.08t)[/tex]
Hence, The equation of the time-dependent function of the position is [tex]x(t)=5\cos(8.08t)[/tex]