Respuesta :
Answer:
[tex]\large\boxed{(x+2)(3x-1)-(x+4)(x-7)=2x^2+8x+26}[/tex]
Step-by-step explanation:
[tex](x+2)(3x-1)-(x+4)(x-7)\\\\\text{Use FOIL:}\ (a+b)(c+d)=ac+ad+bc+bd\\\\(x+2)(3x-1)=(x)(3x)+(x)(-1)+(2)(3x)+(2)(-1)\\\\=3x^2-x+6x-2=3x^2+(-x+6x)-2=3x^2+5x-2\\\\(x+4)(x-7)=(x)(x)+(x)(-7)+(4)(x)+(4)(-7)\\\\=x^2-7x+4x-28=x^2+(-7x+4x)-28=x^2-3x-28\\\\(x+2)(3x-1)-(x+4)(x-7)=(3x^2+5x-2)-(x^2-3x-28)\\\\=3x^2+5x-2-x^2-(-3x)-(-28)=3x^2+5x-2-x^2+3x+28\\\\=(3x^2-x^2)+(5x+3x)+(-2+28)\\\\=2x^2+8x+26[/tex]
Answer:
2x^2 +8x +26
Step-by-step explanation:
I think you're supposed to simplify this:
So what you do is: you must have learmt about FOIL
which means First, Outside, Inside, Last.
So, this is how to do it using FOIL:
(3x^2 -x+6x-2) - ( x^2-7x+4x-28)
Now simplify, combine like terms wherever you can,
(3x^2 +5x -2) - ( x^2 -3x -28)
Note: multiply the subtraction sign otherwise you will end up making a mistake,
3x^2 +5x -2 - x^2 +3x+28
3x^2 -x^2 +5x+3x-2+28
2x^2 +8x +26 Answer
Hope this helps!
Please mark brainliest if you think I helped! Would really appreciate!
Note: Some of these steps can be eliminated, i showed everything for the purpose of making things clear for you!