Respuesta :
Answer:
Option 4 - 0.8508
Step-by-step explanation:
Given : A multiple choice test consists of 60 questions. Each question has 4 possible answers of which one is correct. If all answers are random guesses.
To find : Estimate the probability of getting at least 20% correct ?
Solution :
20% correct out of 60,
i.e. [tex]20\%\times 60=\frac{20}{100}\times 60=12[/tex]
Minimum of 12 correct out of 60 i.e. x=12
Each question has 4 possible answers of which one is correct.
i.e. probability of answering question correctly is [tex]p=\frac{1}{4}=0.25[/tex]
Total question n=60.
Using a binomial distribution,
[tex]P(X\geq 12)=1-P(X\leq 11)[/tex]
[tex]P(X\geq 12)=1-[P(X=0)+P(X=1)+P(X=0)+P(X=1)+P(X=2)+P(X=3)+P(X=4)+P(X=5)+P(X=6)+P(X=7)+P(X=8)+P(X=9)+P(X=10)+P(X=11)][/tex]
[tex]P(X\geq 12)=1- [^{60}C_0(0.25)^0(1-0.25)+^{60-0}+^{60}C_1(0.25)^1(1-0.25)^{60-1}+^{60-1}+^{60}C_2(0.25)^2(1-0.25)^{60-2}+^{60}C_3(0.25)^3(1-0.25)^{60-3}+^{60}C_4(0.25)^4(1-0.25)^{60-4}+^{60}C_5(0.25)^5(1-0.25)^{60-5}+^{60}C_6(0.25)^6(1-0.25)^{60-6}+^{60}C_7(0.25)^7(1-0.25)^{60-7}+^{60}C_8(0.25)^8(1-0.25)^{60-8}+^{60}C_9(0.25)^9(1-0.25)^{60-9}+^{60}C_{10}(0.25)^{10}(1-0.25)^{60-10}+^{60}C_{11}(0.25)^{11}(1-0.25)^{60-11}][/tex]
[tex]P(X\geq 12)\approx 0.8508 [/tex]
Therefore, option 4 is correct.