Determine the bond order from the molecular electron configurations. ( σ 1 s ) 2 ( σ 1 s * ) 2 ( σ 2 s ) 2 ( σ 2 s * ) 2 ( σ 2 p ) 2 ( π 2 p ) 4 ( π 2 p * ) 2 bond order: ( σ 1 s ) 2 ( σ 1 s * ) 2 ( σ 2 s ) 2 bond order:

Respuesta :

Explanation:

The bond order is defined as number of electron pairs present in a bond of the two atoms.

The formula of bond order is given by:

= [tex]\frac{1}{2}\times (\text{Number of bonding electrons}-\text{Number of anti-bonding electrons})[/tex]

1)  [tex](\sigma 1 s )^2 ( \sigma 1 s*)^2 (\sigma 2s )^2 ( \sigma 2 s*)^2 ( \sigma 2 p )^2 ( \pi2 p )^4 (\pi 2 p *)^2 [/tex]

Number of bonding electrons = 10

Number of anti-bonding electrons = 6

The bond order : [tex]\frac{1}{2}\times (10-6)=2[/tex]

2) [tex]( \sigma 1 s )^2 ( \sigma 1 s * )^2 ( \sigma 2 s )^2[/tex]

Number of bonding electrons = 4

Number of anti-bonding electrons = 2

The bond order : [tex]\frac{1}{2}\times (4-2)=1[/tex]

Answer:

Bond order is defined as the difference between bonding and anti-bonding pairs of the atom or molecule. Bond order determines the bond length, strength, and stability of the chemical compound.

Explanation:

Bond order is the measurement of electrons present in the binding and anti-bonding orbitals of a n atom. It is calculated by the difference of bonding and anti-boding orbitals.

Bond Order:

[tex]&= \frac{1}{2} \times ( \text {Number of bonding electrons} - \text {Number of anti-bonding electrons})[/tex]

1) Bond Order of  [tex]( \sigma 1)^{2} ( \sigma 1 s*)^{2} ( \sigma 2s)^{2} ( \sigma 2s*)^{2} ( \sigma 2p)^{2} ( \sigma 2p*)^{2}( \sigma \pi2p)^{4} ( \sigma 2p*)^{2} \\[/tex] will be:

Number of bonding electrons = 10

Number of anti-bonding electrons = 6

Therefore, the bond order = [tex]&= \frac{1}{2} \times ( \text {10} - \text {6}) &=2[/tex][tex]&= \frac{1}{2} \times ( \text {10} - \text {6}) =2[/tex]

Similary,

2) Bond order of [tex]( \sigma 1)^{2} ( \sigma 1 s*)^{2} ( \sigma 2s)^{2}[/tex] will be:

Number of bonding electrons = 4

Number of anti-bonding electrons = 2

Bond order = [tex]&= \frac{1}{2} \times ( \text {4} - \text {2}) &=1[/tex]

For Further Reference:

https://brainly.com/question/13421940?referrer=searchResults

'