Respuesta :

Answer:

The standard from of the expression is: [tex](x +1)^2 + (y-1)^2  = (2)^2[/tex]

Step-by-step explanation:

Here the given expression is :

[tex]x^2+2x+y^2-2y=2[/tex]

Now, the standard form of a circle is given as :

[tex](x-h)^2 + (y -k)^2  = r^2[/tex]

Here, (h,k)  = Coordinates of Center,   r = Radius

Also, use the algebraic identity:

[tex](a \pm b)^2 = a^2 + b^2 \pm 2ab\\[/tex]

Now, converting the given expression in the standard form, we get:

[tex]x^2+2x+y^2-2y=2[/tex]

Add 2 on both sides of the equation, we get:

[tex]x^2+2x+y^2-2y  +2=2  + 2\\\implies x^2+2x + 1 +  y^2-2y + 1  = 4\\\implies  (x^2+2x + 1 )+  (y^2-2y + 1)  = 4\\\implies (x +1)^2 + (y-1)^2  = (2)^2[/tex]

So, here the standard from of the expression is:

[tex](x +1)^2 + (y-1)^2  = (2)^2[/tex]

Center coordinates here are  (h,k)  = ( -1 ,1) and Radius  = 2 units