A 65 kg person jumps from a window to a fire net 18 m below, which stretches the net 1.1 m. Assume the net behaves as a simple spring and
A) Calculate how much it would stretch if the same person was lying on it.
B) How much it would stretch if the person jumped from 35 m

Respuesta :

Answer:

0.03167 m

1.52 m

Explanation:

x = Compression of net

h = Height of jump

g = Acceleration due to gravity = 9.81 m/s²

The potential energy and the kinetic energy of the system is conserved

[tex]P_i=P_f+K_s\\\Rightarrow mgh_i=-mgx+\frac{1}{2}kx^2\\\Rightarrow k=2mg\frac{h_i+x}{x^2}\\\Rightarrow k=2\times 65\times 9.81\frac{18+1.1}{1.1^2}\\\Rightarrow k=20130.76\ N/m[/tex]

The spring constant of the net is 20130.76 N

From Hooke's Law

[tex]F=kx\\\Rightarrow x=\frac{F}{k}\\\Rightarrow x=\frac{65\times 9.81}{20130.76}\\\Rightarrow x=0.03167\ m[/tex]

The net would strech 0.03167 m

If h = 35 m

From energy conservation

[tex]65\times 9.81\times (35+x)=\frac{1}{2}20130.76x^2\\\Rightarrow 10065.38x^2=637.65(35+x)\\\Rightarrow 35+x=15.785x^2\\\Rightarrow 15.785x^2-x-35=0\\\Rightarrow x^2-\frac{200x}{3157}-\frac{1000}{451}=0[/tex]

Solving the above equation we get

[tex]x=\frac{-\left(-\frac{200}{3157}\right)+\sqrt{\left(-\frac{200}{3157}\right)^2-4\cdot \:1\left(-\frac{1000}{451}\right)}}{2\cdot \:1}, \frac{-\left(-\frac{200}{3157}\right)-\sqrt{\left(-\frac{200}{3157}\right)^2-4\cdot \:1\left(-\frac{1000}{451}\right)}}{2\cdot \:1}\\\Rightarrow x=1.52, -1.45[/tex]

The compression of the net is 1.52 m