The energy in an oscillating LC circuit containing a 1.57 H inductor is 5.76 μJ. The maximum charge on the capacitor is 201 μC. For a mechanical system with the same period, find the
(a) mass
(b) spring constant
(c) maximum displacement
(d) maximum speed.

Respuesta :

Answer:

(a)1.57 kg

(b) 281.17 N/m

(c) 201 micrometer

(d) [tex]2.69\times 10^{-3}m/sec[/tex]

Explanation:

We have given that value of inductor L = 1.57 Henry

Inductive energy [tex]E=5.76\mu j=5.76\times 10^{-6}J[/tex]

Maximum charge [tex]Q=201\mu C=201\times 10^{-6}C[/tex]

(A) In electrical mechanical system mass corresponds to inductance

So mass will be m = 1.57 kg

(B) We have given energy [tex]E=\frac{Q^2}{2C}[/tex]

[tex]C=\frac{Q^2}{2E}=\frac{(201\times 10^{-6})^2}{2\times 5.7\times 10^{-6}}=3543.94\times 10^{-6}[/tex]

In electrical mechanical system spring constant is equivalent to [tex]\frac{1}{C}[/tex]

So spring constant [tex]k=\frac{1}{C}=\frac{1}{3543.94\times 10^{-6}}=282.17N/m[/tex]

(c) Displacement is equivalent to maximum charge

So displacement will be [tex]x=201\mu m[/tex]

(d) Maximum speed is correspond to maximum current

As maximum current [tex]i_m=\frac{Q}{\sqrt{LC}}=\frac{201\times 10^{-6}}{\sqrt{1.57\times 3543.94\times 10^{-6}}}=2.69\times 10^{-3}A=2.69\times 10^{-3}m/sec[/tex]