The solubility of gold (III) chloride is 1.00x10^-4 g/L. What is the Ksp for AuCl3 (Molar Mass=303.3 g/mol)
A.) 1.00x10^-16
B.) 2.7x10^-15
C.) 1.2x10^-26
D.) 3.2x10^-25

Respuesta :

Answer: The [tex]K_{sp}[/tex] of gold (III) chloride is [tex]3.2\times 10^{-25}[/tex]

Explanation:

We are given:

Solubility of gold (III) chloride = [tex]1.00\times 10^{-4}g/L[/tex]

Molar mass of gold (III) chloride = 303.3 g/mol

To calculate the solubility in mol/L, we divide the given solubility (in g/L) with molar mass, we get:

[tex]\text{Solubility (in mol/L)}=\frac{\text{Solubilty (in g/L)}}{\text{Molar mass}}[/tex]

Putting values in above equation, we get:

[tex]\text{Solubility of gold (III) chloride (in mol/L)}=\frac{1.00\times 10^{-4}g/L}{303.3g/mol}\\\\\text{Solubility of gold (III) chloride (in mol/L)}=3.29\times 10^{-7}mol/L[/tex]

The balanced equilibrium reaction for the ionization of gold (III) chloride follows:

[tex]AuCl_3\rightleftharpoons Au^{3+}+3Cl^-[/tex]

                s       3s

The expression for solubility constant for this reaction will be:

[tex]K_{sp}=[Au^{3+}][Cl^-]^3[/tex]

We are given:

[tex]s=3.29\times 10^{-7}mol/L[/tex]

Putting values in above equation, we get:

[tex]K_{sp}=(s)\times (3s)^3\\\\K_{sp}=9s^4\\\\K_{sp}=9\times (3.29\times 10^{-7})^4[/tex][tex]K_{sp}=(s)\times (3s)^3\\\\K_{sp}=27s^4\\\\K_{sp}=27\times (3.29\times 10^{-7})^4=3.2\times 10^{-25}[/tex]

Hence, the [tex]K_{sp}[/tex] of gold (III) chloride is [tex]3.2\times 10^{-25}[/tex]