Respuesta :
Answer:
D. X= ± square root of 8 - 2
Step-by-step explanation:
Given quadratic equation is \[x^{2}+4x=4\]
Rearranging the terms: \[x^{2}+4x-4=0\]
This is the standard format of quadratic equation of the form \[ax^{2}+bx+c=0\]
Here, a=1 , b=4 and c=-4.
Roots of the quadratic equation are given by \[\frac{-b \pm \sqrt{b^{2}-4ac}}{2a}\]
Substituting the values and calculating the roots:
\[\frac{-4 \pm \sqrt{(-4)^{2}-4*1*(-4))}}{2*1}\]
= \[\frac{-4 \pm \sqrt{32}}{2}\]
= \[\frac{-2*2 \pm 2*\sqrt{8}}{2}\]
= \[-2 \pm \sqrt{8}\]
Hence option D is the correct option.
Answer:
If X-2=0, then X=2.
Step-by-step explanation:
Hope it helps :)