Respuesta :
Answer:
x=-4 is a vertical asymptote
Step-by-step explanation:
A vertical asymptote of the graph of a rational function f(x) is a line x=a, such that one of of these statements is fulfilled
[tex]\displaystyle \lim _{x\to a^{+}}f(x)=\pm \infty[/tex]
[tex]\displaystyle \lim _{x\to a^{+}}f(x)=\pm \infty[/tex]
Our function is
[tex]\frac{x^2+7x+10}{x^2+9x+20}[/tex]
To find the candidate values of a, we set the denominator to zero
[tex]x^2+9x+20=0[/tex]
Factoring
[tex](x+4)(x+5)=0[/tex]
Which gives us two possible vertical asymptotes: x=-4 or x=-5
We now must confirm if one of the two conditions are true for each value of a
[tex]\displaystyle \lim _{x\to -4^{-}}\frac{x^2+7x+10}{x^2+9x+20}[/tex]
The numerator can be factored as
[tex]x^2+7x+10=(x+2)(x+5)[/tex]
So our limit is
[tex]\displaystyle \lim _{x\to -4^{-}}\frac{(x+2)(x+5)}{(x+4)(x+5)}[/tex]
Simplifying:
[tex]=\displaystyle \lim _{x\to -4^{-}}\frac{(x+2)}{(x+4)}=+\infty[/tex]
We can see x=-4 is a vertical asymptote
Checking with x=-5, and using the simplified limit:
[tex]\displaystyle \lim _{x\to -5^{-}}\frac{(x+2)}{(x+4)}=3[/tex]
[tex]\displaystyle \lim _{x\to -5^{+}}\frac{(x+2)}{(x+4)}=3[/tex]
The limit exists and is 3, so x=-5 is NOT a vertical asymptote
The only vertical asymptote of the function is x=4