Answer:
A² - B² = 0 (Proved).
Step-by-step explanation:
Given that
[tex]A = \frac{\cot \theta + \csc \theta - 1}{\cot \theta - \csc \theta + 1}[/tex]
⇒[tex]A = \frac{\csc \theta + \cot \theta - (\csc^{2} \theta - \cot^{2} \theta)}{\cot \theta - \csc \theta + 1}[/tex]
{Since, we know the identity as [tex]1 = \csc^{2} \theta - \cot^{2} \theta[/tex]}
⇒ [tex]A = \frac{\csc \theta + \cot \theta - (\csc \theta + \cot \theta)\times (\csc \theta - \cot \theta)}{\cot \theta - \csc \theta + 1}[/tex]
⇒ [tex]A = \frac{(\csc \theta + \cot \theta) (\cot \theta - \csc \theta + 1)}{\cot \theta - \csc \theta + 1}[/tex]
⇒ [tex]A = \csc \theta + \cot \theta[/tex]
Again, given that [tex]B = \csc \theta + \cot \theta[/tex]
So, A = B . ⇒ (A - B) = 0.
Hence, A² - B² = (A + B)(A - B) = 0 (Proved)