Respuesta :
Answer:
The diagram of the question is attached here.
The measure of [tex]\angle XBC=135\ (deg)[/tex]
Step-by-step explanation:
All the options given here will be used to find the numeric value of [tex]\angle XBC[/tex]
Here it is shown systematically.
Exterior angle theorem: Sum of two interior angles are equal to the measure of opposite exterior angle in a triangle.
To find [tex]\angle XBC[/tex]
[tex]m\angle XBC = m\angle BAC + m\angle BCA[/tex]
Plugging the values.
[tex]3p-6 = p + 4 + (84)[/tex]
[tex]3p-6 = p + 88[/tex]
Subtracting [tex]p[/tex] both sides.
[tex]2p-6 = 88[/tex]
[tex]2p = 94[/tex]
Dividing [tex]2[/tex] both sides.
[tex]p=\frac{94}{2}=47[/tex]
So plugging the value of [tex]p=47[/tex] in [tex]3p-6[/tex] we will get the measure of [tex]\angle XBC[/tex].
So [tex]\angle XBC=(3p-6)=3(47)-6=135\ (deg)[/tex]
The measure of [tex]\angle XBC[/tex] is [tex]135\ degrees[/tex].
Answer:
If you don't want to read through all of that. The answer is 135! (Right on edge 2021)
Step-by-step explanation: