Respuesta :
Answer:
13.54 N/m
0.6 m
4.37 m/s
32.496 m/s²
Explanation:
m = Mass of block = 0.25 kg
k = Spring constant
A = Amplitude
x = Compression of spring = 0.24 m
a = Acceleration = -13 m/s²
v = Velocity = 4 m/s
The weight of the block and force on spring is equal
[tex]ma=-kx\\\Rightarrow k=-\frac{ma}{x}\\\Rightarrow k=-\frac{0.25\times -13}{0.24}\\\Rightarrow k=13.54\ N/m[/tex]
The spring's force constant is 13.54 N/m
Total energy of the system is given by
[tex]E=\frac{1}{2}(mv^2+kx^2)\\\Rightarrow E=\frac{1}{2}(0.25\times 4^2+13.54\times 0.24^2)\\\Rightarrow E=2.39\ J[/tex]
At maximum displacement v = 0
[tex]E=\frac{1}{2}(mv^2+kA^2)\\\Rightarrow E=\frac{1}{2}(0+kA^2)[/tex]
[tex]\\\Rightarrow E=\frac{1}{2}kA^2\\\Rightarrow A=\sqrt{\frac{E2}{k}}\\\Rightarrow A=\sqrt{\frac{2\times 2.39}{13.54}}\\\Rightarrow A=0.6\ m[/tex]
The amplitude of the motion is 0.6 m
Speed of the block
[tex]E=\frac{1}{2}mv_m^2+0\\\Rightarrow v_m=\sqrt{\frac{2E}{m}}\\\Rightarrow v_m=\sqrt{\frac{2\times 2.39}{0.25}}\\\Rightarrow v_m=4.37\ m/s[/tex]
The maximum speed of the block during its motion is 4.37 m/s
Forces in the spring
[tex]ma_m=kA\\\Rightarrow a_m=\frac{kA}{m}\\\Rightarrow a_m=\frac{13.54\times 0.6}{0.25}\\\Rightarrow a_m=32.496\ m/s^2[/tex]
Maximum magnitude of the block's acceleration during its motion is 32.496 m/s²