Respuesta :
We want to simplify a fraction. The simplification is:
[tex]\frac{15*p^{-4}q^{-6}}{-20*p^{-12}*q^{-3}} = \frac{-3*p^8}{4*q^3}[/tex]
So we start with the fraction:
[tex]\frac{15*p^{-4}q^{-6}}{-20*p^{-12}*q^{-3}}[/tex]
Where:
- p ≠ 0.
- q ≠ 0.
Now, remember the rule:
[tex]\frac{x^n}{x^m} = x^{n - m}[/tex]
Then we can rewrite:
[tex]\frac{15*p^{-4}*q^{-6}}{-20*p^{-12}*q^{-3}} = \frac{15}{-20}*\frac{p^{-4}}{p^{-12}}*\frac{q^{-6}}{q^{-3}} \\\\= -\frac{-3}{4}*p^{-4 - (-12)}*q^{-6 - (-3)}\\\\= -\frac{-3}{4}*p^{8}*q^{-3}\\\\= \frac{-3*p^8}{4*q^3}[/tex]
And we can't keep simplifying this, so this is the correct answer.
If you want to learn more, you can read:
https://brainly.com/question/2468151