Respuesta :

Answer:

The value 3 represents the vertical translation upwards of [tex]f(x)[/tex] to [tex]g(x)[/tex]

Step-by-step explanation:

The question is incomplete or missing data.

The correct question

What value represents the vertical translation from the graph of the parent function [tex]f(x) = x^2[/tex] to the graph of the function

[tex]g(x) = (x + 5)^2 + 3[/tex]?

Given functions:

Parent function

[tex]f(x) = x^2[/tex]

Translated function

[tex]g(x) = (x + 5)^2 + 3[/tex]

Translation rules

For horizontal shift

[tex]f(x)\rightarrow f(x+c)[/tex]

If [tex]c>0[/tex] the function shifts [tex]c[/tex] units to the left.

If [tex]c<0[/tex] the function shifts [tex]c[/tex] units to the right.

For vertical shift

[tex]f(x)\rightarrow f(x)+c[/tex]

If [tex]c>0[/tex] the function shifts [tex]c[/tex] units to the up.

If [tex]c<0[/tex] the function shifts [tex]c[/tex] units to the down.

From the functions given the translation rule can be given as:

[tex]f(x)\rightarrow f(x+5)+3[/tex]

[tex]g(x)=f(x+5)+3[/tex]

This shows the graph is shifted left by 5 units and upwards by 3 units.

Thus the value 3 represents the vertical translation of [tex]f(x)[/tex] to [tex]g(x)[/tex]