[tex]h^{-1}(x) = \frac{2x-8}{5}[/tex]
Step-by-step explanation:
Given function is:
[tex]h(x) = \frac{5}{2}x+4[/tex]
In order to find the inverse:
Replacing h(x) with y
[tex]y = \frac{5}{2}x+4[/tex]
Replacing x with y and y with x
[tex]x = \frac{5}{2}y+4[/tex]
Solving for y
[tex]x = \frac{5}{2}y+4\\x - 4 = \frac{5}{2}y+4-4\\x-4 = \frac{5}{2}y\\y = \frac{2}{5}(x-4)\\y = \frac{2x-8}{5}[/tex]
Replace y with h^(-1)(x)
[tex]h^{-1}(x) = \frac{2x-8}{5}[/tex]
Hence,
[tex]h^{-1}(x) = \frac{2x-8}{5}[/tex]
Keywords: Inverse, Functions
Learn more about functions at:
#LearnwithBrainly