Respuesta :

[tex]h^{-1}(x) = \frac{2x-8}{5}[/tex]

Step-by-step explanation:

Given function is:

[tex]h(x) = \frac{5}{2}x+4[/tex]

In order to find the inverse:

Replacing h(x) with y

[tex]y = \frac{5}{2}x+4[/tex]

Replacing x with y and y with x

[tex]x = \frac{5}{2}y+4[/tex]

Solving for y

[tex]x = \frac{5}{2}y+4\\x - 4 = \frac{5}{2}y+4-4\\x-4 = \frac{5}{2}y\\y = \frac{2}{5}(x-4)\\y = \frac{2x-8}{5}[/tex]

Replace y with h^(-1)(x)

[tex]h^{-1}(x) = \frac{2x-8}{5}[/tex]

Hence,

[tex]h^{-1}(x) = \frac{2x-8}{5}[/tex]

Keywords: Inverse, Functions

Learn more about functions at:

  • brainly.com/question/4361464
  • brainly.com/question/4390083

#LearnwithBrainly