Answer:
A
[tex]F(x)=-\frac{1}{1500}(x+20)(x+5)(x-15)[/tex]
B
[tex]=> F(x)=-\frac{x^3}{1500}-\frac{x^2}{150}+\frac{11x}{60}+1[/tex]
Step-by-step explanation:
Function and its graphs
Part A
The graph shown in the image corresponds to a cubic function because of its classical infinite branches, three real roots and two extrema values
Part B
Knowing the value of the three roots x=-20, x=-5, and x=15 we can express the cubic function in factored form:
[tex]F(x)=C(x+20)(x+5)(x-15)[/tex]
The value of C will be determined by using any particular point from the graph. Let's use (0,1)
[tex]1=C(0+20)(0+5)(0-15)[/tex]
[tex]C=-\frac{1}{1500}[/tex]
Replacing, we find the factored form of the function
[tex]F(x)=-\frac{1}{1500}(x+20)(x+5)(x-15)[/tex]
The standard form demands to expand all the products and simplify
[tex]F(x)=-\frac{1}{1500}(x^3+10x^2-275x-1500)[/tex]
[tex]=> F(x)=-\frac{x^3}{1500}-\frac{x^2}{150}+\frac{11x}{60}+1[/tex]