If x = 3t - 8 and y = 4 + t , then the equation [tex]y=\frac{x}{3}+\frac{20}{3}[/tex] represents variable y in terms of x.
Solution:
Given two equations are
x = 3t - 8 ------(1)
y = 4 + t ------(2)
Need to determine the equation which express y in terms of x.
If we observer the two equations, common variable between the two is variable t.
So let’s first get the value of t in terms of x from equation 1.
[tex]\begin{array}{l}{x=3 t-8} \\\\ {=>-3 t=-8-x} \\\\ {=>t=\frac{-8-x}{-3}=\frac{x+8}{3}} \\\\ {=>t=\frac{x+8}{3}}\end{array}[/tex]
[tex]\text {On substituting } t=\frac{x+8}{3} \text { in equation }(2), \text { we get }[/tex]
[tex]\begin{array}{l}{y=4+\frac{x+8}{3}} \\\\ {=>y=\frac{12+x+8}{3}} \\\\ {=>y=\frac{x+20}{3}} \\\\ {y=\frac{x}{3}+\frac{20}{3}} \\\\ y=0.334x+6.67}\end{array}[/tex]
Hence equation [tex]y=\frac{x}{3}+\frac{20}{3}[/tex] represents variable y in terms of x.