Respuesta :

Answer:

[tex]BC = 4.8[/tex] and [tex]B_{1}D_{1} = 6.25[/tex]

Step-by-step explanation:

The parallelograms ABCD and [tex]A_{1} B_{1} C_{1}D_{1}[/tex] are similar.

Now, AB = 8 (Given in the figure), so CD = 8.

Now, we can write, [tex]\frac{BC}{B_{1}C_{1}}  = \frac{CD}{C_{1}D_{1}}[/tex]

⇒ [tex]\frac{BC}{3} = \frac{8}{5}[/tex]

{Since, given that [tex]B_{1}C_{1} = 3[/tex] and [tex]C_{1}D_{1} = 5[/tex]}

[tex]BC = \frac{8 \times 3}{5} = 4.8[/tex] (Answer)

Again, we can write, [tex]\frac{BD}{B_{1}D_{1}}  = \frac{CD}{C_{1}D_{1}}[/tex]

⇒ [tex]\frac{10}{B_{1}D_{1}} = \frac{8}{5}[/tex] {Since, BD = 5 + 5 = 10}

[tex]B_{1}D_{1} = \frac{5 \times 10}{8} = 6.25[/tex] (Answer)