Answer:
[tex]\large \boxed{\text{2920 yr}}[/tex]
Explanation:
Two important formulas in radioactive decay are
[tex](1) \qquad t_{\frac{1}{2}} = \dfrac{\ln 2}{k}\\\\(2) \qquad \ln \left(\dfrac{N_{0}}{N}\right) = kt[/tex]
1. Calculate the decay constant k
[tex]\begin{array}{rcl}t_{\frac{1}{2}} &=& \dfrac{\ln 2}{k}\\\\\text{1530 yr} &= &\dfrac{\ln 2}{k}\\\\k & = & \dfrac{\ln 2}{\text{1530 yr}}\\\\& = & 4.530 \times 10^{-4} \text{ yr}^{-1}\\\end{array}[/tex]
2. Calculate the time
[tex]\begin{array}{rcl}\ln \left(\dfrac{N_{0}}{N}\right) &= &kt \\\\\ln \left(\dfrac{15}{4}\right) &= &4.530 \times 10^{-4} \text{ yr}^{-1}\times t \\\\\ln 3.75 &= &4.530 \times 10^{-4} \text{ yr}^{-1}\times t \\t &= &\dfrac{\ln 3.75}{4.530 \times 10^{-4} \text{ yr}^{-1}}\\\\& = & \textbf{2920 yr}\\\end{array}\\\text{It would take $\large \boxed{\textbf{2920 yr}}$ for the rate to decrease to 4 dis/min.}[/tex]