contestada

The Bernoulli equation is valid for steady, inviscid, incompressible flows with a constant acceleration of gravity. Consider flow on a planet where the acceleration of gravity varies with height so that g=g0−cz, where g0 and c are constants. Integrate "F=ma" along a streamline to obtain the equivalent of the Bernoulli equation for this flow.

Respuesta :

Answer:

[tex]p+\frac{1}{2}ρV^{2}+ρg_{0}z-\frac{1}{2}ρcz^{2}=constant[/tex]

Explanation:

first write the newtons second law:

F[tex]_{s}[/tex]=δma[tex]_{s}[/tex]

Applying bernoulli,s equation as follows:

∑[tex]δp+\frac{1}{2} ρδV^{2} +δγz=0\\[/tex]

Where, [tex]δp[/tex] is the pressure change across the streamline and [tex]V[/tex] is the fluid particle velocity

substitute [tex]ρg[/tex] for {tex]γ[/tex] and [tex]g_{0}-cz[/tex] for [tex]g[/tex]

[tex]dp+d(\frac{1}{2}V^{2}+ρ(g_{0}-cz)dz=0[/tex]

integrating the above equation using limits 1 and 2.

[tex]\int\limits^2_1  \, dp +\int\limits^2_1 {(\frac{1}{2}ρV^{2} )} \, +ρ \int\limits^2_1 {(g_{0}-cz )} \,dz=0\\p_{1}^{2}+\frac{1}{2}ρ(V^{2})_{1}^{2}+ρg_{0}z_{1}^{2}-ρc(\frac{z^{2}}{2})_{1}^{2}=0\\p_{2}-p_{1}+\frac{1}{2}ρ(V^{2}_{2}-V^{2}_{1})+ρg_{0}(z_{2}-z_{1})-\frac{1}{2}ρc(z^{2}_{2}-z^{2}_{1})=0\\p+\frac{1}{2}ρV^{2}+ρg_{0}z-\frac{1}{2}ρcz^{2}=constant[/tex]

there the bernoulli equation for this flow is [tex]p+\frac{1}{2}ρV^{2}+ρg_{0}z-\frac{1}{2}ρcz^{2}=constant[/tex]

note: [tex]ρ[/tex]=density(ρ) in some parts and change(δ) in other parts of this equation. it just doesn't show up as that in formular

ACCESS MORE
EDU ACCESS