Future space stations will create an artificial gravity by rotating. Consider a cylindrical space station of 380 m diameter rotating about its axis. Astronauts walk on the inside surface of the space station. What rotation period will provide "normal" gravity? On a space walk on the outside of the space station how much gravity would they experience?

Respuesta :

Answer:

27.66 s

Explanation:

Space station creates artificial gravity by rotational movement about its axis .

The object inside also move in circular motion creating centrifugal force which creates acceleration in them .

centrifugal acceleration = ω² R where ω is angular velocity and R is radius of the cylindrical space station .

R = 380 /2 = 190 m

Given

ω² R = g = 9.8

ω² = 9.8 / R

= 9.8 / 190

= 5.15x 10⁻²

ω = 2.27 x 10⁻¹

= .227 rad / s

2π / T = .227 ( T is time period of rotation )

T = 2π / .227

= 27.66 s .

outside of the space station they will experience zero acceleration , because they are rotating around the earth.

ACCESS MORE