A transformer has 18 turns of wire in its primary coil and 90 turns in its secondary coil. An alternating voltage with an effective value of 110 V is applied to the primary coil. At the secondary coil, an alternating voltage with an effective value of 550 V is obtained. A current of 29 A is supplied to the primary coil of the transformer. Calculate the maximum effective current in the secondary coil. The maximum effective current in the secondary coil is A.

Respuesta :

Answer:

[tex]I_s=5.8A[/tex]

Explanation:

Not considering any type of losses in the transformer, the input power in the primary is equal to the output power in the secondary:

[tex]P_p=P_s[/tex]

So:

[tex]V_p*I_p=V_s*I_s[/tex]

Where:

[tex]V_p=Voltage\hspace{3}in\hspace{3}the\hspace{3}primary\hspace{3}coil\\V_s=Voltage\hspace{3}in\hspace{3}the\hspace{3}secondary\hspace{3}coil\\I_p=Current\hspace{3}in\hspace{3}the\hspace{3}primary\hspace{3}coil\\I_s=Current\hspace{3}in\hspace{3}the\hspace{3}secondary\hspace{3}coil[/tex]

Solving for [tex]I_s[/tex]

[tex]I_s=\frac{V_p*I_p}{V_s}[/tex]

Replacing the data provided:

[tex]I_s=\frac{110*29}{550} =5.8A[/tex]

ACCESS MORE
EDU ACCESS