Respuesta :
Answer:
[tex]F = 2\pi \dfrac{mMG}{L^2}}[/tex]
Explanation:
Assuming given,
Mass of wire be M
length of wire be L
small mass at center is = m
Radius of the wire be equal to = R = L/π
mass of small element of the wire
[tex]dM = \dfrac{M}{L}Rd\theta[/tex]
All the force are acting along y- direction
so, for force calculation
[tex]F = \int \dfrac{mdMG}{R^2} sin\theta [/tex]
[tex]F = \int_0^{\pi} \dfrac{m\dfrac{M}{L}RG}{R^2} sin\theta d\theta[/tex]
[tex]F = \int_0^{\pi} \dfrac{mMG}{L\dfrac{L}{\pi}} sin\theta d\theta[/tex]
[tex]F = \pi \dfrac{mMG}{L^2}}\int_0^{\pi}sin\theta d\theta[/tex]
[tex]F = \pi \dfrac{mMG}{L^2}}(-cos \theta)_0^{\pi}[/tex]
[tex]F = 2\pi \dfrac{mMG}{L^2}}[/tex]
The magnitude of the gravitational force is : [tex]2\pi \frac{mMG}{L^{2} }[/tex]
Given that :
mass of wire = M
length of wire = L
small mass at center = m
radius of wire = L / [tex]\pi[/tex]
Determine the magnitude of the gravitational force exerted by the wire on a point
First step : express the mass of small element of wire
dM = [tex]\frac{M}{L} Rd[/tex]∅
Since all forces act in the vertical direction the magnitude of the force exerted will be
F = [tex]\int\limits^\pi _o {\frac{m\frac{M}{L} RG}{R^2} } \, sin\beta d\beta[/tex]
[tex]F = \pi \frac{mMG}{L^2} \int\limits^\pi _0 {x} \, sin\beta d\beta[/tex]
Resolving equation above
Therefore F = [tex]2\pi \frac{mMG}{L^{2} }[/tex]
Hence we can conclude that The magnitude of the gravitational force is : [tex]2\pi \frac{mMG}{L^{2} }[/tex]
Learn more about gravitational force : https://brainly.com/question/19050897